| | | 网站旧版

张凯兵

作者: 时间:2016-10-25 点击数:

所属学科专业:控制科学与工程

导师简介:

张凯兵,1975年生,男,模式识别与智能系统专业工学博士,信息与通信工程学科博士后,悉尼科技大学访问学者。担任IEEE Signal Processing LettersInformation SciencesIEEE Transactions on Cybernetics Pattern RecognitionIEEE Trans. on Image Processing等多个国际期刊的审稿人。承担国家自然科学基金、中国博士后科学基金、省科技厅、省教育厅科学技术项目以及教育厅优秀中青年创新团队项目的研究。近5年来,在IEEE Trans. on Image ProcessingIEEE Trans. on Neural Networks and Learning SystemsIEEE Access, NeurocomputingSignal Processing(Elsevier)CVPRICIP等国际期刊和会议发表论文30余篇,获陕西省科学技术奖一等奖,教育部高等学校科学研究优秀成果奖二等奖,陕西省高等学校科学技术一等奖。获评2018年度ACM西安“新星奖”(排名第一)和ACM中国“新星奖”提名,2014年度西安电子科技大学优秀博士论文。曾指导学生获全国大学生软件设计大赛一等奖,第十三届中国研究生电子设计竞赛西北赛区三等奖。

主要研究方向:影像超分辨重建及质量评价、计算机视觉检测与分析、跨模态人脸合成与识别、智能交通视频分析与理解、交通大数据分析及应用、深度学习等。

近年来主持的主要科研项目

1.基于多视角特征集成学习的图像超分辨重建方法(陕西省自然科学基础研究计划重点项目,2018.1—2020.12)

2.资源受限环境下实时超分辨重建方法研究(国家自然科学基金面上项目, 2015.1—2018.12)

3.基于多线性映射关系学习的实时高质量图像超分辨重建(博士后基金特别资助, 2014.1—2016.6)

4.基于稀疏一致性字典学习超分辨重建方法研究(中国博士后基金一等资助,2014.1—2015.12)

国家授权正规彩票app5.基于多视角特征学习的双低油菜缺素智能诊断方法(省自然科学基金, 2016.1—2018.12)

6.多尺度相似性冗余结构学习超分辨重建方法研究(省自然科学基金, 2012.1—2014.12)

7.基于非局部正则化和字典学习超分辨重建方法(省教育厅中青年项目, 2012.1—2013.12)

近年来主要科研成果:

1.张凯兵,王珍,等.基于级联回归基学习的单帧图像超分辨重建方法, 2018. 6,中国,申请号:201810689607.3.

国家授权正规彩票app2.张凯兵,闫亚娣,等.基于颜色相似性和位置聚集性的显著性织物疵点检测方法,2018. 6,中国,申请号:201810687458.7

国家授权正规彩票app3.张凯兵,王珍,等.一种基于AdaBoost实例回归的超分辨率重建方法, 2018. 4,中国,申请号:201810320295.9.

4.张凯兵,王珍,等.一种基于多级字典学习的残差实例回归超分辨重建方法, 2018. 4,中国,申请号:201810320484.6.

5.高新波,张凯兵,等,基于对偶约束的联合学习超分辨方法,2012. 10,中国,授权号:ZL 201010298564.x.

6.高新波,沐广武,张凯兵,李洁,等.基于高分辨率字典的稀疏表征图像超分辨重建方法, 2011. 8,中国,申请号:201110058174.x.

国家授权正规彩票app7.复杂纺织品缺陷图像分析及产品开发,2018年陕西省科学技术,一等奖(排序8)

8.异构可视媒体的内容分析与可信服务研究,2015年度陕西省科学技术,一等奖(排序9)

9.临地空间信息栅格网理论与关键技术, 2013年度高等学校科学研究优秀成果奖(科学技术),二等奖(排序7).

10.视频监控序列中基于画像的人脸检索,2011年度陕西省高等学校科学技术奖,二等奖(排序7).

国家授权正规彩票app11.2014年西安电子科技大学优秀博士论文.

12.2018年度ACM西安“新星奖”奖(排名第一).

发表论文:

期刊论文:

[1]Kaibing Zhang (张凯兵), Zhen Wang, Jie Li, Xinbo Gao, and ZenggangXiong, Learning recurrent residual regressors for single imagesuper-resolution,Signal Processing,2018to be published.(SCI检索,IF=3.470/2017)

[2]Kaibing Zhang (张凯兵), Yadi Yan, Pengfei Li, Junfeng Jing, Xiuping Liu, Zhen Wang.Fabric defect detection using salience metric for color dissimilarity and positional aggregation,2018,IEEE Access,DOI: 10.1109/ACCESS.2018.2868059.(SCI检索,IF=3.577/2017)

[3]Kaibing Zhang (张凯兵), Dacheng Tao,Xinbo Gao,Xuelong Li*, and Jie Li , Coarse-to-fine learning for single image super-resolution,IEEE Transactions Neural Networks and Learning Systems,2017, 28(5):1109-1122. (SCI:000401981800008IF=7.982/2017)

[4]Kaibing Zhang (张凯兵), Jie Li, ZenggangXiong, Xiuping Liu, and Xinbo Gao*, Optimized multiple linear mappings for single image super-resolution,Optics Communications,2017,404,169-176. (SCI: 000412617900023, IF=1.860/2017)

[5]Kaibing Zhang (张凯兵), Jie Li, Haijun Wang, Xiuping Liu, and Xinbo Gao*, Learning local dictionaries and similarity structures for single image super-resolution,Signal Processing, 2018, 142: 231–243 (SCI: 000412611900025, IF=3.470/2017)

[6]Single image super-resolution using regularization of non-local steering kernel regression,Signal Processing, 2016,123: 53-63. (SCI, IF=3.470/2017)

[7]Kaibing Zhang (张凯兵), Dacheng Tao*, Xinbo Gao, Xuelong Li, and ZenggangXiong, Learning multiple linear mappings for efficient single image super-resolution,IEEE Transactions on Image Processing,2015, 24(3) 846–861. (SCI:000348458000002IF=5.071/2017)

[8]Cheng Deng, Jie Xu,Kaibing Zhang(张凯兵),Dacheng Tao, XinboGao,andXuelong Li, Similarity constraints based structured output regression machine: an approach to image super-resolution,IEEE Transactions Neural Networks and Learning Systems,2016,27(2):2472-2485.(SCI:000388919600002, IF=7.982/2017)

[9]Haijun Wang, Xinbo Gao,Kaibing Zhang (张凯兵),Jie Li, Single image super-resolution using Gaussian process regression with dictionary-based sampling and Student-t likelihood,IEEE Transactions on Image Processing,26(7): 3556-3568, 2017. (SCI:000402136500020,IF=5.071/2017)

[10]Haijun Wang, Xinbo Gao,Kaibing Zhang (张凯兵),Jie Li, Image super-resolution using non-local Gaussian process regression,Neurocomputing, 2016,194: 95-106. (SCI: 000376548100010, IF= 3.317/2016)

[11]Haijun Wang, Xinbo Gao,Kaibing Zhang (张凯兵),Jie Li, Single image super-resolution using active-sampling Gaussian process regression,IEEE Transactions on Image Processing,25(2): 935-948, 2015. (SCI:000368938400005IF=5.071/2017)

[12]Haijun Wang, Xinbo Gao,Kaibing Zhang (张凯兵),Jie Li, Fast single image super-resolution using sparse Gaussian process regression,Signal Processing, 2017, 134: 52-62. (SCI:000393243800005,IF=3.470/2017)

[13]Jifei Yu, Xinbo Gao, , Xuelong Li*, Dacheng Tao, andKaibing Zhang (张凯兵),A unified learning framework for single image super-resolution.IEEE Transactions Neural Networks and Learning Systems,2014, 25(3):780–792. (SCI: 000333098700011, IF=7.982/2017)

[14]Kaibing Zhang (张凯兵), Xinbo Gao, Dacheng Tao, and Xuelong Li*,Single image super-resolution with multi-scale similarity learning,IEEETransactionsonNeural Networks and Learning Systems,2013, 24(10): 1648-1659.(SCI: 000325981400012, EI: 20134216849774, IF=7.982/2017)

[15]Kaibing Zhang (张凯兵),Xinbo Gao, Xuelong Li*, and Dacheng Tao, Partially supervised neighbor embedding for example–based image super–resolution,IEEE Journal of Selected Topics in Signal Processing,2011, 5:(2): 230–239. (SCI: 000288458100003, EI: 20111313857082,IF=4.361/2017)

[16]Kaibing Zhang (张凯兵), Xinbo Gao, Dacheng Tao, and Xuelong Li*,Single image super–resolution with non–local means and steering kernel regression.IEEE Transactions on Image Processing,2012, 21(11):4544–4556.(SCI:000310140700005,EI:20124415619794,IF=5.071/2017)

[17]Kaibing Zhang (张凯兵),Guangwu Mu, Yuan Yuan*, Xinbo Gao, and Dacheng Tao,Video superresolution with 3D adaptive normalized convolution,Neurocomputing,2012, 94:140–151. (SCI:000307087000014, EI: 20122815227441, IF= 3.241/2017)

[18]Xinbo Gao,Kaibing Zhang (张凯兵),Dacheng Tao, and Xuelong Li*,Joint learning for single image super–resolution via a coupled constraint,IEEE Transactions on Image Processing,第21卷,第2期,469–480, 2012. (SCI: 000300559700004, EI: 20120514729691, IF=5.071/2017)

[19]Xinbo Gao,Kaibing Zhang (张凯兵),Dacheng Tao, and Xuelong Li*,Single image super–resolution with sparse neighbor embedding,IEEE Transactions on Image Processing,2012, 21(7):3194–3205. (SCI: 000305577600007, EI: 20122615154413,IF=5.071/2017)

[20]Xinbo Gao, Qian Wang, Xuelong Li*, Dacheng Tao, andKaibing Zhang (张凯兵),Zernike–moment–based image super resolution.IEEE Transactions on Image Processing,2011,20(10): 2738–2747. (SCI: 000295008100004, EI: 20113814351126, IF=5.071/2017)

[21]张凯兵,李春生,章爱群.基于HSV空间颜色直方图的油菜叶片缺素诊断[J].农业工程学报, 2016, 32(19):179-187.(EI20163902855601)

国家授权正规彩票app[22]李云红,王珍,张凯兵,等.基于学习的图像超分辨重建方法综述.计算机工程与应用, 2018,54(15): 13-21.(CSCD-E)

[23]闫亚娣,张凯兵,李鹏飞,王珍,朱丹妮.基于可控高斯核的色织物疵点检测方法.计算机工程与应用, 2018,录用待发表.(CSCD-E)

[24]张凯兵,王珍,优化的Adaboost回归超分辨重建.计算机工程与应用, 2018,录用待发表.(CSCD-E)

会议论文:

[1]Kaibing Zhang (张凯兵)*,Xinbo Gao, Dacheng Tao, and Xuelong Li,Multi–scale dictionary for single image super–resolution.Proc. Computer Vision and Pattern Recognition (CVPR),Jun.16–21, Rhode Island, USA, pp1114–1121.2012.(EI20124015484215, Acceptance rate= 24%)

[2]Kaibing Zhang (张凯兵)*,Xinbo Gao, Dacheng Tao, and Xuelong Li, Image super-resolution via non-local steering kernel regression regularization.Proc. IEEE International Conference on Image Processing(ICIP), Sep.15–18, pp. 943 – 946, Melbourne, Australia, 2013. (EI:20141117461493)

[3]Guangwu Mu *, Xinbo Gao,Kaibing Zhang (张凯兵),Xuelong Li, and Dacheng Tao, Single image super resolution with high resolution dictionary.Proc. IEEE International Conference on Image Processing(ICIP),Sep.11–14, pp 1141–1144, Brussels, Belguim, 2011. (EI: 20120514729838)

[4]Kaibing Zhang (张凯兵)*, Jun Lu, Handwritten character recognition via sparse representation and multiple classifiers combination.Proc. IEEE International Conference on Information Theory and Information Security (ICITIS), pp. 1139-1142, 2010. (EI20110813683711)

[5]Chunman Yan,Kaibing Zhang (张凯兵), Yunping Qi, Image denoising using modifed nonsubsampled Contourlet transform combined with Gaussian scale mixtures model,Proc. International Conference on Intelligence Science and Big Data Engineering(IScIDE), 2015. (EI:国家授权正规彩票app20155301740838)

[6]Kaibing Zhang (张凯兵)*,Hongxing Xia, Haijun Wang, Chunman Yan, Xinbo Gao, Single image super-resolution with one-pass algorithm and local neighbor regression,Proc. International Conference on Communication Technology,2016,930-935.(EI:20161502215082)

国家授权正规彩票app联系方式:15191418916,xihua_0169@163.com

国家授权正规彩票appCopyright(c)2012 国家授权正规彩票app  

国家授权正规彩票app地址:中国·西安·金花南路19号[710048]   

国家授权正规彩票app联系我们:webmaster@xpu.edu.cn  

陕ICP备022000

分享到QQ空间新浪微博人人网腾讯微博网易微博0